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Noise-enhanced stability of sine-Gordon breathers
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Summary. — A noise-induced enhancement of the breather stability in a lossy,
stochastic sine-Gordon system is discussed. The numerical solutions indicate that a
spatially uniform noisy source enables a stationary breather to survive way beyond
its deterministic lifetime. An average characteristic time for the breather is defined,
whose values vary nonmonotonically as a function of the noise strength, while being
almost unaffected by the mode’s initial phase.

1. – Introduction

The combination of nonlinearity and noise can lead to surprising phenomena. Promi-
nent examples are stochastic resonance [1], stochastic resonant activation [2], and noise-
enhanced stability (NES) [2-6]. In the latter case, the stability of an unstable system
increases thanks to a finite noise strength —definitely a counterintuitive fact. Starting
from the pioneering work in ref. [3], the NES effect has attracted a great deal of interest
across the scientific community [2, 4-6].

Here, the stability of breather solutions of the sine-Gordon (SG) equation [7, 8] is
considered. An SG breather is a space-localized, time-periodic soliton formed by two
elementary SG excitations with opposite topological charge, i.e., by a kink and an an-
tikink [7, 8].

The focus on the SG framework is motivated by the wide range of both purely physi-
cal and interdisciplinary applications in, e.g., gravity and black holes [8], seismology [9],
biophysics [10], superconductor-based systems [11], and Bose-Einstein condensates [12].
In particular, the experimental observation of breathers in long Josephson junc-
tions (LJJs) [11] is a long-established problem in mesoscopic soliton physics [13-17],
and its resolution requires a detailed understanding of the stochastic dynamics of these
nonlinear excitations. Moreover, both optically-excited breathers in cuprate supercon-
ductors [11] and breather-type oscillations of the global tectonic shear stress fields [18]
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have been detected in the last few years. Note also that breather modes are actively
studied even beyond the SG model as well as in discrete systems [19].

An important issue concerning SG breathers is that, when friction comes into play,
they are unstable [20]. Inspired by recent investigations showing that noise can have
beneficial effects in the generation of breather states [13-17], a noisy SG equation is
examined below in the presence of dissipation to establish whether the stochastic term
can positively affect the persistence time of these solitonic excitations. Interestingly, the
simulations reveal that a spatially uniform noisy source allows a stationary breather to
survive way past its lifetime in the purely dissipative (deterministic) case. An average
characteristic time for the breather is defined, whose behaviour is nonmonotonic as a
function of the noise strength. Different values of the mode’s initial phase are chosen,
and the results are very close to each other.

2. – The model

Equation

(1) ϕxx − ϕtt − αϕt = sinϕ− γ(t)

is considered for the field ϕ(x, t) over the region [−l/2, l/2]× [0, tobs], with l = 50 and
tobs = 250 being the system length and the observation time, respectively. In eq. (1),
partial differentiation is indicated via subscripts, α = 0.02 is a friction coefficient, and γ(t)
is a spatially-uniform, Gaussian stochastic force with zero average and autocorrelation
function 〈γ(t1)γ(t2)〉 = 2Γδ(t1 − t2).

Equation (1) is numerically integrated with the boundary conditions ϕx(−l/2, t) =
ϕx(l/2, t) = 0 and the initial conditions ϕ(x, 0) = ϕb(x, 0) and ϕt(x, 0) = ϕb

t(x, 0), where

(2) ϕb(x, t) = 4 arctan

[√
1− ω2

ω

sin (ωt+ ϑ)

cosh
(√

1− ω2x
)
]

is the stationary breather solution of the pure SG equation, i.e., eq. (1) with α = γ(t) = 0,
in an infinite spatial domain [7, 8]. In eq. (2), ω = 0.9 < 1 and 0 ≤ ϑ ≤ 2π are the
oscillation frequency and phase, respectively.

Note that the above framework reliably models the behavior of an overlap LJJ, in the
absence of external magnetic fields, when the friction and a randomly-varying electrical
bias are taken into account [11]. In this case, space and time are normalized to the
Josephson penetration depth λJ and the inverse of the Josephson plasma frequency
ωp, respectively [11]. The initial condition corresponds to a stationary breather being
generated at the LJJ’s midpoint. Actually, the Josephson realm provides a solid physical
background for this study, and the parameters are fixed to values typical in such a
context [13-17].

From a numerical standpoint, the SG system is handled via an implicit finite-difference
scheme, with discretization steps Δx = Δt = 0.005, see ref. [21] for further details.

3. – Results and discussion

In the presence of both dissipation and noise, two main “decay channels” can be
identified: i) a kink-antikink pair arises due to the energy gain from the stochastic
fluctuations (fig. 1(a)); ii) the breather relaxes into radiative modes (fig. 1(b)).
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Fig. 1. – Energy density, ε(x, t) = 0.5
(
ϕ2

t + ϕ2
x

)
+ 1− cosϕ [7, 8], for two different realiza-

tions. In panel (a), where Γ = 10−2 and ϑ = 0, a kink-antikink splitting can be appreciated
at t = τ ≈ 65. In panel (b), where Γ = 7× 10−3 and ϑ = 0, a radiative decay scenario is illus-
trated for a breather which persists up to t = τ ≈ 150. In panel (a) (panel (b)), the cyan and
green dashed horizontal lines denote the deterministic breather lifetime, i.e., ln (2)/α ≈ 35, and
the instant t = τ ≈ 65 (t = τ ≈ 150), respectively.

Since no x-dependent perturbations are included in eq. (1), the evolution of the sta-
tionary breather can be followed by monitoring its oscillation center, namely x = 0. In
particular, in view of the two scenarios described above, for each run, τ2π and τ1/2 are
defined as the smallest time instants at which the breather’s amplitude reaches values 2π

and ϕb
1/2 = 2arctan

(√
1− ω2/ω

)
, respectively. In the former case, the hitting of 2π sig-

nals the emergence of kink-type structures, whereas in the latter case, the halving of the
excitation’s amplitude with respect to its initial value (see eq. (2)) is reasonably related
to substantial radiative losses. The quantity τ = min

{
τ2π, τ1/2

}
(1) is then introduced,

and it represents a proxy of the breather’s lifetime in the presence of noise (see, e.g., the
green dashed horizontal lines in fig. 1) [21].

With τ(Γ = 0) ≈ ln (2)/α serving as the reference point, fig. 2 illustrates the rela-
tive change of the average characteristic time 〈τ〉, computed over N = 2500 realizations,
versus the noise amplitude Γ ∈

[
10−5, 10−2

]
. Here, four initial phase values ϑ are exam-

ined (black circles, ϑ = 0; red squares, ϑ = π/2; green triangles, ϑ = π; blue diamonds,
ϑ = 3π/2). Firstly, the plot highlights, regardless of ϑ, the robustness of the breather
against noise, i.e., 〈τ〉 ≈ τ(Γ = 0) is observed for a significant range of amplitudes Γ.
Figure 2 also displays closely spaced nonmonotonic trends for the different ϑ values, i.e.,
evidence of a positive noise-induced effect on the breather’s stability is found.

This interesting phenomenon is exemplified in fig. 1 for ϑ = 0. In particular, the
strongly localized mode is seen to survive up to t = τ ≈ 150 in fig. 1(b) (see the green
dashed horizontal line), i.e., far beyond its deterministic lifetime, thanks to the noisy
force’s energy input.

In conclusion, this paper shows that a spatially-uniform noise source can be beneficial
for the SG breather’s persistence, independently of the initial phase ϑ. Noise can thus

(1) This expression holds when both τ2π and τ1/2 can be evaluated. If, in a given run, only τ2π(
τ1/2

)
is defined, one simply considers τ = τ2π

(
τ = τ1/2

)
.
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Fig. 2. – Relative change of the quantity 〈τ〉, computed over N = 2500 realizations, vs. the noise
strength Γ ∈

[
10−5, 10−2

]
. Each of the different marker types corresponds to a phase value ϑ:

black circles, ϑ = 0; red squares, ϑ = π/2; green triangles, ϑ = π; blue diamonds, ϑ = 3π/2.

represent a control parameter within an experimental setup devoted to the breather’s
detection and related applications [13-17]. See ref. [21] for more information.
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