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Properties of pasta phases in catalyzed neutron stars
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Summary. — Exotic non-spherical configurations of nuclei, known as “pasta”
phases, are expected to be present at the bottom of the inner crust of a neutron star.
We study the properties of these configurations in catalyzed neutron stars within
a compressible liquid-drop model approach, with surface parameters optimized to
reproduce experimental nuclear masses. Our results show that the properties of the
pasta phases exhibit strong model dependence. To estimate the model uncertain-
ties, a Bayesian analysis is performed, combining information from nuclear physics
experiments and chiral perturbation theoretical calculations with astrophysical ob-
servations. The inferred posterior distributions are discussed, with particular focus
on the effect of the low-density energy functional on the predictions.

1. – Introduction

In the deepest region of the inner crust of a neutron star (NS), it is expected that
non-spherical shapes of nuclei, known as “pasta phases”, are energetically favorable. The
existence of pasta phases, in particular of “bubbles”, at high densities in the crust was
already suggested in the pioneering work of ref. [1]. Other, non-spherical, shapes, particu-
larly two-dimensional (rods, tubes) and one-dimensional (slabs) geometries, were further
investigated in refs. [2-4], while more complex structures were studied more recently, e.g.,
in refs. [5-8].

Numerous studies have been conducted in the last decades on the nuclear pasta,
using different approaches, like compressible liquid drop models (CLDMs), semi-classical
methods, nuclear energy density functional theory, and molecular dynamics (see, e.g.,
ref. [9] for a recent review, and references therein). Recently, we have extended the
CLDM of Carreau et al. [10, 11] to account for non-spherical configurations in the NS
inner crust [12,13], and evaluated the uncertainties in the pasta-phase properties using the
Bayesian inference. This analysis predicted that a sizable amount of the crust is made up
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of pasta structures. Specifically, we estimated the relative thickness and mass of the pasta
layer compared to that of the whole crust to be 12.8% and 48.5%, respectively (see table
5 in ref. [12]), in good agreement with the results obtained in ref. [14]. Although, up to
now, there is no direct evidence of the existence of the pasta phases from NS observations,
the presence of these “exotic” configurations can potentially have an important impact
on various NS phenomena, such as NS cooling [15-17], transport properties [18,19], crust
oscillations [20,21], and pulsar magnetic and rotational evolution [22].

In this work, we pursue the investigation of refs. [12, 13], presenting additional dis-
cussions on both the model dependence of the pasta-phase predictions and the effect
of the low-energy density functional on the fractional crustal thickness and mass of the
pasta layer. In sect. 2, we describe the main points of the formalism used in modeling
the nuclear pasta. The model dependence of the pasta-phase properties is presented in
sect. 3, while in sect. 4 we discuss the importance of constraining the energy functional
at low densities for the determination of the uncertainties of pasta-phase observables.
Finally, conclusions are given in sect. 5.

2. – Model of the pasta phases

We model the pasta phases under the cold catalyzed matter hypothesis, that is, under
the assumption of full equilibrium at zero temperature. Details on the formalism are
presented in refs. [12, 13]; here, we briefly recall the main points and assumptions.

At a given baryon density nB in the NS inner crust, the structure of matter is approx-
imated by a periodic lattice configuration of identical Wigner-Seitz (WS) cells of volume
VWS. Each WS cell contains a cluster or a hole, of volume V . The density distribution in
the Wigner-Seitz cell is ni (ng) if l < rN , and ng (ni) otherwise, ng being the density of
the surrounding uniform neutron gas, rN is the linear dimension of the pasta structure,
and l the linear coordinate of the cell. The density of the denser phase is ni = A/V in
the case of cluster (ni = A/(VWS − V ) in the case of holes) and its proton fraction is
given by yp = Z/A, Z (A) being the proton number (total mass number) of the cluster.
The surrounding uniform electron gas has density ne such that charge neutrality holds,
i.e., ne = np, with np being the total proton density in the cell.

In order to obtain the ground state of the system, the energy density of the WS cell has
to be minimized with the constraint of baryon density conservation. The corresponding
thermodynamic potential per unit volume in the CLDM can be written as

Ω = (nB − np)mnc
2 + npmpc

2 + εB(ni, 1− 2yp)f(u)

+ εB(ng, 1)(1− f(u)) + εCoul + εsurf+curv + εe(ne)− μtot
B nB ,(1)

where mn (mp) is the neutron (proton) mass, εB(n, δ) is the uniform nuclear matter
energy density at density n and isospin asymmetry δ = (nn − np)/n, with nn (np) the
neutron (proton) density, εe(ne) is the electron gas energy density, μtot

B is the baryonic
chemical potential (including the rest mass), εsurf+curv and εCoul are the surface and
Coulomb energies, respectively, and the function f is given by f(u) = u (or f(u) = 1−u)
for clusters (holes), with u = V/VWS; see sect. 2 in ref. [13] for details.

From eq. (1), we can see that a nuclear model is defined by the choice of the bulk
functional, εB , supplemented with the interface energy, εsurf+curv and εCoul. For the
energy density of homogeneous nuclear matter, εB , we use the meta-modeling approach
proposed by Margueron et al. [23, 24]. Within this approach, a Taylor expansion in
x = (n − nsat)/(3nsat) (nsat ≈ 0.15 fm−3 being the saturation density) up to order N
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(N = 4 in the present case) around the saturation point (n = nsat, δ = 0) is introduced,
with the parameters of the expansion corresponding to the so-called equation-of-state
empirical parameters. In addition, a δ5/3 term from the fermionic zero-point energy
and an exponential correction ensuring the correct limiting behavior at zero density are
added (see eq. (5) in ref. [13], and ref. [10] for details). As for the finite-size contributions,
which are the only terms dependent on the nuclear geometry, we make use of the same
expressions as in refs. [12, 13,25], see eqs. (8)–(15) in ref. [13].

The complete parameter set, denoted as X, consists of 18 parameters (13 bulk pa-
rameters plus 5 surface parameters): for each functional, i.e., for a given set of bulk
parameters, the surface and curvature parameters are determined from a χ2-fit to the
experimental masses from the Atomic Mass Evaluation (AME) 2016 [26]. Then, given
a nuclear model, i.e., a full set of X parameters, at each baryon density nB , the equi-
librium phase and composition are obtained in two steps: first, the optimal geometry
is determined by the configuration having the lowest WS-cell energy density, then, the
thermodynamic potential, eq. (1), is minimized with respect to five variational parame-
ters (ni, I = 1 − 2yp, A, np, and ng) to obtain the composition. Note that we consider
here five customary geometries, namely spheres, cylinders (rods), slabs, tubes, and bub-
bles. The equilibrium phase corresponds to the one having the minimum value of the
“optimal” thermodynamic potential.

3. – Model dependence of the pasta phases

To show the model dependence of the pasta-phase properties, we performed the cal-
culations as described in sect. 2 employing three different nuclear energy functionals, as
illustrative examples: BSk24 [27], DD-MEδ [28], and TM1 [29]. The corresponding val-
ues of empirical parameters and optimized surface parameters for these three functionals
are given in tables 1 and 2 of ref. [12].

We start the discussion by showing in fig. 1 the competition among the geometries in
the densest region of the inner crust, near the crust-core transition. Since, as mentioned
in sect. 2, the only dependence on the geometry of the pasta in the thermodynamic
potential to be minimized, eq. (1), enters in the surface and Coulomb energies, in fig. 1
we plot the energy difference Δε = εcrust − εHM , where εcrust is the WS-cell energy
density obtained from the minimization procedure for a given geometry, and εHM is the
WS-cell energy density calculated for the homogeneous matter at β-equilibrium. We can
clearly observe that the differences in Δε are more pronounced when comparing the three
functionals than among the five geometries within the same functional. This also yields,
for the three models, very different optimal compositions, as one can see, for example, in
fig. 2 of ref. [13]. In addition, the results in fig. 1 show that the transitions among the
five phases as well as the crust-core transition are strongly affected by the choice of the
energy functional. This can also be observed comparing the left columns illustrated for
each functional in fig. 2, where the sequence of equilibrium geometries is displayed.

The consistent minimization of the thermodynamic potential Ω in eq. (1) for each
geometry is crucial in getting the correct configuration for the ground state of matter.
This procedure, which is however relatively time consuming, plays an important role
in calculations requiring the exact composition as input, such as in the calculations of
transport coefficients [19]. However, for the determination of more global quantities,
such as thickness, mass, or moment of inertia of the pasta phases, one can instead fix the
composition of the different phases to that obtained for spheres. To justify this point, on
the right columns for each functional in fig. 2, we display the sequence of the equilibrium
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Fig. 1. – WS-cell energy-density difference as a function of baryon density for five geometries:
spheres (red solid lines), rods (blue dash-dotted lines), slabs (green dashed lines), tubes (orange
dotted lines), and bubbles (black solid lines), for three functionals: BSk24, DD-MEδ, and TM1.
In each panel, the point of intersection of the lowest Δε curve with the horizontal black line
corresponds to the crust-core transition.

Fig. 2. – Sequence of equilibrium geometries as a function of baryon density nB for three nuclear
functionals: BSk24, DD-MEδ, and TM1. See text for details.

geometries obtained when the minimization is performed assuming for all geometries
the composition obtained for spheres. The results suggest that this assumption does
not change considerably the transition densities, and can thus be adopted to reduce the
computational time when performing the Bayesian analysis (see next section).

A complementary information on the importance of the pasta layer in NSs is given
by the pasta fractional thickness and the associated mass, that we plot in fig. 3 as a
function of the NS mass M (in unit of solar mass M�). Although the numerical values of
Rpasta/Rcrust and Mpasta/Mcrust are strongly model dependent, the presence of pasta is
robustly predicted by all the considered models. On the other hand, the variation of the
fractional pasta thickness (mass) with the NS mass is similar for the three functionals
and amounts to ≈ 20% (≈ 10%) when changing the NS mass from 0.4M� to 2M�.

4. – Influence of the low-density equation of state

The results presented in the previous section highlight the model dependence of pasta
properties. To quantitatively assess this point and determine the impact of our current



PROPERTIES OF PASTA PHASES IN CATALYZED NEUTRON STARS 5

Fig. 3. – Thickness (left panel) and mass (right panel) fractions of the pasta phases with respect
to the whole crust as a function of the NS mass M for three functionals: BSk24 (blue solid
lines), DD-MEδ (orange dash-dotted lines), and TM1 (green dashed lines).

incomplete knowledge of the nuclear energy functional on the uncertainties of pasta-phase
properties, we have performed a Bayesian analysis. We started by considering flat non-
informative priors, constructed by largely varying the model parameters X according to
our current knowledge provided by nuclear-physics experiments (see table 1 in ref. [13]).
For each prior model, the minimization of the corresponding Ω potential, eq. (1), was
carried out to find the equilibrium composition of the crust. Models yielding non-physical
solutions were discarded. We then applied to the prior both low-density (LD) constraints
from nuclear physics and high-density (HD) constraints coming from general and NS
physics to generate the posterior distribution

(2) ppost(X) = N ωLD(X)ωHD(X)ωmass pprior(X),

where N is the normalization factor, pprior is the prior probability, and ωmass is a like-
lihood expression representing the quality of reproduction of the experimental masses
from the AME2016 [26]. The wLD filter accounts for the uncertainty band of the chiral
effective field theory (EFT) calculations of the energy per particle of symmetric and pure
neutron matter of ref. [30], which is considered as a 90% confidence interval. Due to the
accuracy in the chiral EFT calculation, the filtering bands at low density are very nar-
row, thus the rejection rate is high. The second strict filter we applied, ωHD, is defined
by imposing causality, thermodynamic stability, non-negative symmetry energy, and the
resulting equation of state to support observed massive NSs [31], Mmax ≥ 1.97M�, where
Mmax is the maximum NS mass obtained with a given model, i.e., with a given parameter
set X (see refs. [32,33] for a discussion on the importance of the high-density constraints).

Since NS global properties are rather determined by the high-density part of the
equation of state, the compatibility of the functionals with ab-initio predictions at very
low-density was usually overlooked. Here, with the aim of focusing on the importance of
the low-density part of the energy functional on the pasta-phase properties, we consid-
ered two density intervals for applying the LD filter, namely [0.1, 0.2] fm−3 and [0.02, 0.2]
fm−3. When the filter was applied in the range [0.1, 0.2] ([0.02, 0.2]) fm−3, we generated
2 × 106 (108) models in the prior, and obtained 7714 (7008) models in the final poste-
rior. These statistics are sufficient for this study as increasing the number of models
has no significant impact on the results. The posterior correlation of the fractions of
thickness, Rpasta/Rcrust, and associated mass, Mpasta/Mcrust, as well as their probability
density distributions, are displayed in fig. 4. When the filter is applied from n ≥ 0.1
fm−3 (left panel), noticeable peaks arise at very low Rpasta/Rcrust and Mpasta/Mcrust,
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Fig. 4. – Posterior correlation between the fractional thickness and mass of the pasta phases
with respect to the whole crust calculated at M = Mmax. Left (right) panel: the LD filter is
applied in the interval [0.1, 0.2] fm−3 ([0.02, 0.2] fm−3).

compatible with a small or even null pasta layer, contrarily to the case when the energy
functional is constrained from lower density, n ≥ 0.02 fm−3 (right panel). In the latter
case, the uncertainties in the fractional crustal thickness and mass of the pasta layer
are reduced and the correlation enhanced. These results corroborate those obtained in
refs. [12, 13], additionally showing the importance of constraining the energy functional
in the very-low-density region to determine the pasta-phase properties (see refs. [12, 13]
for a discussion on the correlation of the pasta-phase properties with the nuclear
parameters X).

5. – Conclusions

To study the pasta-phase properties in catalyzed NSs, we employed a CLDM in which
the bulk energy is calculated using a meta-modeling approach and finite-size parameters
are optimized on the AME2016 atomic mass table. The model dependence of the results
is illustrated using three energy functionals, namely BSk24, DD-MEδ, and TM1. To
quantitatively estimate the uncertainties of the pasta-phase properties, we performed a
Bayesian analysis starting from non-informative priors obtained largely varying the model
parameters within current uncertainties coming from nuclear-physics experiments and
imposing constrains coming from both (theoretical and experimental) nuclear physics and
astrophysics. The results we obtained confirm those presented in our previous studies [12,
13], namely, i) the robustness in the prediction of the existence of pasta phases at the
bottom of the inner crust; ii) the model dependence of the pasta-phase properties; and
iii) the importance of constraining the functional from very low densities to properly
determine the pasta-phase observables.
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