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Summary. — By using freeze-out properties of multifragmenting hot nuclei pro-
duced in quasifusion central 129Xe+ natSn collisions at different beam energies (32,
39, 45 and 50AMeV) which were estimated by means of a simulation based on exper-
imental data collected by the 4π INDRA multidetector, heat capacity in the thermal
excitation energy range 4–12.5AMeV was calculated from total kinetic energies and
multiplicities at freeze-out. The microcanonical formulation was employed. Nega-
tive heat capacity which indicates a first order phase transition for finite systems is
observed and confirms previous results using a different method.

1. – Introduction

An important challenge of heavy-ion collisions at intermediate energies was the high-
lighting and characterization of the liquid-gas phase transition in hot nuclei. At present,
huge progress has been made, even if some points can be deeper investigated [1-3]. This
was notably the case for the observation of negative microcanonical heat capacity related
to the consequences of local convexity of the entropy for finite systems [3, 4].

About twenty years ago, MULTICS and INDRA Collaborations highlighted this sig-
nal of negative heat capacity [5-7]. The method to derive heat capacity was proposed
in [8] and applied to both experimental and microcanonical lattice gas model [9] data
showing for the model that negative heat capacity appeared as a robust signal. The
method is based on the fact that for a given total thermal energy, the average partial
energy stored in a part of the system is a good microcanonical thermometer, while the
associated fluctuations can be used to construct heat capacity. In this approach, a single
temperature is used to describe the system at freeze-out: the same temperature is associ-
ated with both internal excitation and thermal motion of emitted fragments, which is not
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physically obvious if one remembers that the level density is expected to vanish at high
excitation energies [10-12]. On the other hand, it was also shown a few years after, from
a detailed simulation, the necessity to impose a limitation for the temperature of frag-
ments to be able to reproduce experimental data and consequently the necessity to use
two temperatures: a microcanonical temperature corresponding to the thermal motion
and a second temperature corresponding to the internal excitation of fragments. Exact
microcanonical formulae with the two temperatures were proposed in [13, 14]; they are
used in this work. Both methods need information from data reconstructed at freeze-out.

In the paper we shall first recall previous results with the first method, called method
1, in what follows. Then a section will be devoted to the detailed simulation for recon-
structing freeze-out properties. Results applying exact microcanonical formulae (method
2) are presented in sect. 4. Finally, before concluding, results with both methods are
discussed.

2. – Microcanonical heat capacity with method 1 (partial energy fluctuations)

The method proposed in [8] was applied to quasi-fused (QF) systems for central
129Xe+natSn collisions at different bombarding energies: 32, 39, 45 and 50AMeV. Ex-
perimental data were collected with the 4π multidetector INDRA described in detail in
refs. [15,16]. Accurate particle and fragment identifications were achieved and the energy
of the detected products was measured with an accuracy of 4%. Further details can be
found in refs. [17, 18].

Without entering into all the details of method 1, we can just recall the main points.
From experiments made, the simplest decomposition of the thermal excitation energy is
in a kinetic part, Ek, and a potential part, Epot (Coulomb energy + total mass excess).
These quantities have to be determined at freeze-out and consequently it is necessary to
trace back this configuration on an event by event basis. The true configuration needs the
knowledge of the freeze-out volume and of all the particles evaporated from primary hot
fragments including the (undetected) neutrons. Consequently, some working hypotheses
are used, constrained by specific experimental results (see for example [19]). Then, the
experimental correlation between the kinetic energy per nucleon Ek/A and the thermal
excitation energy per nucleon E∗/A of the considered system can be obtained event by
event as well as the variance of the kinetic energy σ2

k. Note that Ek is calculated by sub-
tracting the potential part Epot from the thermal excitation energy E∗ and consequently
kinetic energy fluctuations at freeze-out reflect the configurational energy fluctuations.
An estimator of the microcanonical temperature of the system can be obtained from the
kinetic equation of state,

(1) 〈Ek〉 =
〈

M∑
i=1

ai

〉
T 2 +

〈
3

2
(M − 1)

〉
T

The brackets 〈〉 indicate the average on events with the same E∗, ai is the level density
parameter and M the multiplicity at freeze-out. In this expression the same temperature
is associated with both internal excitation and thermal motion of fragments. Then an
estimate of the total microcanonical heat capacity is extracted using three equations.

(2) Ck =
δ〈Ek/A〉

δT
,
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Fig. 1. – Microcanonical heat capacity per nucleon as a function of the thermal excitation energy
(total excitation energy corrected on average for the radial collective energy).

is obtained by taking the derivative of 〈Ek/A〉 with respect to T .
Using a Gaussian approximation for the kinetic energy distribution, its variance can

be calculated as

(3) Aσ2
k � T 2 CkCpot

Ck + Cpot
.

Equation (3) can be inverted to extract, from the observed fluctuations, an estimate of
the microcanonical heat capacity:

(4)

(
C

A

)
micro

� Ck + Cpot �
C2

k

Ck − Aσ2
k

T 2

.

From eq. (4) we see that the specific microcanonical heat capacity (C/A)micro becomes
negative if the normalized kinetic energy fluctuations Aσ2

k/T
2 overcome Ck. Figure 1

shows the results obtained [6,7]. The heat capacity is plotted as grey zones (error bars).
At 32 and 39AMeV a negative branch is observed.

3. – A detailed simulation for reconstructing freeze-out properties: the ne-
cessity to use two temperatures

Starting from the same raw data, the reconstruction of freeze-out properties from
simulations [20,21] was the following. Data with a very high degree of charge complete-
ness were selected, (measured fraction of the available charge ≥93% of the total charge
of the system), which is crucial for a good estimate of Coulomb energy. QF sources were
reconstructed, event by event, by summing the contributions of fragments (Z ≥ 5) at all
angles and doubling that of light charged particles (Z < 5) emitted between 60 and 120◦

in the reaction centre of mass, in order to exclude the major part of pre-equilibrium emis-
sion [22,23]; with such a prescription, only light charged particles with isotropic angular
distributions and angle-independent average kinetic energies are considered. In simula-
tions, dressed excited fragments and particles at freeze-out are described by spheres at
normal density. Then the excited fragments subsequently deexcite while flying apart.
All the available asymptotic experimental information (charged particle spectra, average
and standard deviation of fragment velocity spectra and calorimetry) is used to constrain
the four free parameters of simulations to recover the data at each incident energy: the
percentage of measured particles which were evaporated from primary fragments, the col-
lective radial energy, a minimum distance between the surfaces of products at freeze-out
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Fig. 2. – Comparison in the reaction centre of mass between the experimental velocity spectra of
fragments of a given charge (full points) and the simulated ones (histograms). Each row refers
to a different fragment charge and each column to a different beam energy. From [20].

and a limiting temperature for excited fragments found equal to 9MeV. All the details
of simulations can be found in refs. [20,21]. The limiting temperature, related to the van-
ishing of level density for fragments [12], was found mandatory to reproduce the observed
widths of fragment velocity spectra. With a single temperature (internal and kinetic tem-
peratures equal) the sum of Coulomb repulsion, collective energy, thermal kinetic energy
directed at random and spreading due to fragment decays accounts for about 60–70%
of those widths. By introducing a limiting temperature, which corresponds to intrinsic
temperatures for fragments in the range 4–7MeV (see fig. 1 of [24]), the thermal kinetic
energy increases, due to energy conservation, thus producing the missing percentage for
the widths of final velocity distributions. As shown in fig. 2, the agreement between ex-
perimental and simulated velocity spectra for fragments, for the different beam energies,
is quite remarkable.

4. – Direct formulae from the microcanonical ensemble: method 2

Direct formulae have been proposed in ref. [13] to calculate heat capacity, but have
never been used to extract information from data. They are derived within the micro-
canonical ensemble by considering fragments interacting only by Coulomb and excluded
volume, which corresponds to the freeze-out configuration. Within this ensemble, the
statistical weight of a configuration c, defined by the mass, charge and internal excita-
tion energy of each of the constituting Mc fragments, can be written (see [13, 25]). To
apply the deduced formulae for microcanonical temperature and the second derivative
of the system entropy versus thermal energy or alternatively heat capacity, two parame-
ters were fixed in the microcanonical ensemble to ensure coherence with the simulations
performed to estimate quantities at freeze-out. These are the fragment level density in
which the limiting temperature for fragments is fixed at 9MeV [14] as obtained from
simulations and the number of kinetic degrees of freedom which was fixed according to
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the conservation of energy and linear momentum as in simulations. The microcanonical
temperature is deduced from its statistical definition [13],

T =

(
∂S

∂E∗

)−1

=

(
1∑
c Wc

∑
c

Wc(3/2Mc − 5/2)/K

)−1

=〈(3/2Mc − 5/2)/K〉−1(5)

Wc is the statistical weight of a configuration and the notation 〈〉 refers to the average
over the ensemble states. The heat capacity of the system, C, is related to the second
derivative of the entropy by the equation ∂2S/∂E∗2 = −1/CT 2. Thus, one can evaluate
the second derivative of the system entropy versus E∗ (eq. (6)) or alternatively the heat
capacity C (eq. (7)),

∂2S

∂E∗2 =

〈
(3/2Mc − 5/2)(3/2Mc − 7/2)

K2

〉
−

〈
(3/2Mc − 5/2)

K

〉2

,(6)

C =

(
1− T 2

〈
(3/2Mc − 5/2)(3/2Mc − 7/2)

K2

〉)−1

.(7)

These two quantities only depend on two parameters, Mc, the total multiplicity and K,
the total thermal kinetic energy estimated at freeze-out from the detailed simulation.

Values of heat capacity and second derivative of the entropy versus thermal excitation
energy E∗ have been calculated respectively from eqs. (7) and (6) for QF hot nuclei with
Z restricted to the range 80–100 to suppress tails of the distributions and by putting
together simulation results from the different incident energies. The average over the
ensemble states have been assimilated to an average over “event ensembles” sorted into
E∗ bins. A binning of 0.5AMeV was chosen to have a sufficient number of events in each
bin in order to reduce statistical errors. Figure 3 shows the results. Error bars correspond
to systematic plus statistical errors; systematic errors were evaluated by varying the free
parameters of simulations within their limits defined by a χ2 procedure [20]. The left part
of the figure shows the results for the direct calculation of C/A. Negative heat capacity
is observed on a rather large thermal excitation energy range and the second diverging
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Fig. 3. – Heat capacity (left) and second derivative of the entropy (right) versus thermal excita-
tion energy E∗. Error bars correspond to systematic plus statistical errors (see text). From [25].
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region is more visible than the first one. As the second derivative of the entropy is a very
small quantity (from ∼2.10−4 to ∼3.10−6), we have kept the presentation made in [13]
i.e., A2∂2S/∂E∗2 for fig. 3, right panel; A is replaced by the average mass of the QF hot
nuclei, 〈A〉, on the considered E∗ bin. This quantity better defines the E∗ domain of
negative heat capacity. Positive values are measured in the range 6.0–10.0AMeV. The
related microcanonical temperatures calculated with eq. (5) are displayed in fig. 4; they
are rather constant around 17–18MeV in the E∗ range where negative heat capacity is
observed. With the large multiplicities observed in the present study, microcanonical
temperatures are close to classical kinetic temperatures (see fig. 3 of [24]).

5. – The two methods: comparison of results

As compared to heat capacity estimates of method 1 [6, 7], there is a significant
difference with results of method 2 for the E∗ range of negative values: 6.0 ± 1.0–
10.0±1.0AMeV for method 2 and <4.0±1.0–6.0±1.0AMeV with method 1. For QF hot
nuclei selection, the same event shape sorting was used. The degree of completeness was
different (93% here to be compared to 80% before) but it does not affect significantly the
thermal excitation energy per nucleon. The method to reconstruct freeze-out properties
was also different. But the main difference seems to be related to the average freeze-out
volume. In method 1 the average freeze-out volume used was kept constant at 3 times
the volume at normal density (3 V0) over the whole thermal excitation energy range,
whereas with the detailed simulation it varies from 3.9 to 5.9 V0 (see fig. 4 of [25]). To
check this, method 1 has been applied to freeze-out data used with method 2. From the
detailed simulation, for each E∗ bin, we have calculated 〈Ek〉 (see eq. (1)) and derived
an apparent single temperature, TS (see fig. 4), needed to build the normalized kinetic
energy fluctuations, Aσ2

k/T
2
S , to be compared to Ck (see eqs. (2) and (4)). Figure 5 shows

that heat capacity becomes negative in the E∗ range 5.5±1.0–9.0±1.0AMeV, i.e., when
Aσ2

k/T
2
S overcomes Ck. This clearly confirms that the main difference, as compared to

estimates with method 1, comes from different average freeze-out volumes. We also note
a small decrease of the E∗ domain of negative heat capacities as compared to method 2,
which possibly comes from approximations made in method 1.
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Fig. 4. – Evolution of temperatures with thermal excitation energy: microcanonical temperature,
Tmicro, used in method 2 and single temperature, TS , for method 1. Error bars correspond to
systematic plus statistical errors.
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6. – Conclusion

Heat capacity measurements have been revisited without approximation and by cor-
recting the hypothesis of a single temperature associated with both internal excitation
and thermal motion of fragments. For those measurements, microcanonical formulae
and data reconstructed at freeze-out with the help of a detailed simulation have been
used. Negative heat capacity was confirmed for hot nuclei in the coexistence region of
the liquid-gas phase transition. For the future, one of the last points to be also deeper in-
vestigated is the bimodality signature for QF hot nuclei. As demonstrated for Δ-scaling,
the effect of the onset and increase of radial expansion must be understood [3,22,26,27].
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