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Summary. — We show the possibility of inducing a superconductive phase tran-
sition in tetrahedrally coordinated semiconductors via field-effect (FET) doping by
taking as an example the hydrogenated (111) silicon surface. We perform density
functional theory computations of the electronic and vibrational properties of the
system in the proper FET geometry, by taking into account the applied electric
field and the induced charge density. Using a simplified superconductive model at
q = Γ and the McMillan/Allen-Dynes formula, we get an estimate of the super-
conductive critical temperature. We observe that, by heavily doping with holes at
ndop = 6 ·1014 cm−2, we get an electron-phonon coupling constant of λSi = 0.98 and
a superconductive phase transition at Tc ∈ [8.94; 10.91] K, with μ∗ ∈ [0.08; 0.12].

1. – Introduction

Since the pioneering work of Cohen in 1964 [1], degenerate semiconductors have been
shown both theoretically [2-4] and experimentally [5, 6] to undergo a superconductive
phase transition upon chemical doping. In 2004 Ekimov et al. [5] observed a supercon-
ductive transition with critical temperature Tc ∼ 4 K in boron-doped bulk diamond (with
a dopant concentration nB ≈ 4 × 1021 cm−3), while in 2006 Bustarret et al. [6] showed
that the same happens for boron-doped bulk silicon, at Tc ∼ 0.35 K (nB ≈ 3×1021 cm−3).
Even if ab initio computations [2-4] suggest that the critical temperature could be en-
hanced by increasing the amount of dopants, the solubility limit hinders further inclusion
of boron into the crystal structure.

A possible alternative to chemical doping is field-effect doping [7, 8], which induces
an accumulation of charges in the first few layers of the sample. The technique consists
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in applying an electric field between the sample and a gate electrode, in a field-effect-
transitor (FET) configuration. If a solid dielectric is used to separate the sample from
the gate, surface densities of induced charges as high as 1012–1013 cm−2 can be obtained.
Much higher values (up to 1014–1015 cm−2 [7, 8]) can be attained by replacing the solid
dielectric with a polymer-electrolyte solution or an ionic liquid. When a positive (nega-
tive) gate voltage is applied, the anions (cations) present in the electrolyte accumulate at
the interface with the sample, inducing in its first few layers a negative (positive) charge
distribution.

Following the theoretical prediction of field-effect–induced superconductivity in hole-
doped hydrogenated diamond surfaces [9-12], in this work we perform a similar analysis
using ab initio density functional theory on the hydrogenated silicon surface. More
precisely, since high-Tc superconductivity was found in the (111) hydrogenated diamond
surface (H–C(111)) at high doping [12], we will here investigate the (111) hydrogenated
surface of silicon (H–Si(111)) when doped via field effect at the same hole concentration.

2. – Model and methods

2.1. Computational methods. – In this work we model the H–Si(111) surface as a
slab made of 14 atomic layers, terminated on both sides by a layer of H atoms, for a
total of 16 atoms in the primitive cell (fig. 1). The slab will be centered around z = 0
(where z is the axis perpendicular to the surface) in order to have a symmetric system.
Calling L the total length of the cell used for computations, the layer of accumulated
charges at the interface will be modelled as a planar uniform charge distribution placed
at zgate = −0.181L, while a potential barrier of height V = 6 Ry is set at z = −0.18L.
The potential barrier prevents charge spilling from the H–SI(111) surface and avoids
collapse of the charged slab towards the planar charge distribution due to electrostatic
forces (similar to what happens to the plates of a capacitor). In order to avoid spurious
interactions between repeated images of the system due to periodic boundary conditions,
we add ≈30 Å of vacuum along z. The H–Si(111) surface is obtained by starting from
bulk Si, whose lattice parameter was computed to be aB,t = 5.46859 Å (which is only
0.7% larger than the experimental value [13] aB,e = 5.43070 Å). Finally, the equilibrium
position of the H–Si(111) surface with respect to the potential barrier is found by letting
the slab relax minimizing total energy and interatomic forces [14]. In order to have a

Fig. 1. – Stick-and-ball model of the hydrogenated silicon (111) surface (side view). θH is the
angle formed by H(1) and Si(1), while θSi is the angle formed by Si(1) and Si(2). “H–Si” denotes
the bond length between H(1) and Si(1).
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comparison with the induced high-Tc superconductive phase of the H–C(111) surface [12],
in this work we will investigate the same hole doping: ndop = 6 · 1014 cm−2.

Density functional theory (DFT) computations are performed through the Quantum
ESPRESSO package [14-16]. Hole doping and the presence of a transverse electric field
due to the FET configuration are fully taken into account in a self-consistent way, both
for electronic and vibrational properties, as described in ref. [14], and the appropriate
boundary conditions for ground state and linear response computations are set by trun-
cating the long-range Coulomb interaction along the non-periodic z-direction. Exchange
and correlation are here modelled according to the Perdew-Burke-Ernzerhof (PBE) func-
tional, while the interaction between valence electrons and the core are taken into account
through ultrasoft pseudopotentials [17] for both atomic species. The First Brillouin Zone
(FBZ) is sampled, both for the neutral and doped surface, with a Monkhorst-Pack grid
of 24 × 24 electron momenta (k-points). Self-consistency is checked upon satisfaction
of convergence criteria, i.e., 10−9 Ry for the total energy and 10−3 Ry/a0 for the total
force per atom. The cut-off for the kinetic energy is set to 30 Ry, while that for the
charge density is set to 240 Ry. We use a Gaussian smearing of 0.006 Ry for the doped
surface, and of 0.003 Ry for electronic and vibrational computations, respectively. The
value of the smearing is chosen so as to ensure convergence of the total energy per atom
(<1mRy) and of the total force per atom (<1 mRy/a0), with the additional requirement
that it is smaller than the difference between the Fermi level and the top of the last
crossed valence band. Finally, when computing the electronic density of states (DOS)
we increment the k-point uniform grid to 96 × 96.

2.2. Simplified superconductive model . – In order to estimate the superconductive
critical temperature (Tc), we will employ the McMillan/Allen-Dynes formula [18,19]:

Tc =
ωlog

1.2
exp

{
− 1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

}
,(1a)

λ = 2
∫

dω
α2F (ω)

ω
,(1b)

ωlog = exp
{ 2

λ

∫
log(ω)

α2F (ω)
ω

dω
}

,(1c)

where λ is the electron-phonon coupling constant and ωlog is the logarithmic averaged
phonon frequency. The Eliashberg spectral function α2F (ω) expresses the frequency
dependence of the electron-phonon interaction and is defined by

(2) α2F (ω) =
1

Nσ(0)NqNk

∑
ν,n,m

∑
k,q

|gν
kn,k+qm|2δ(εkn)δ(εk+qm)δ(ω − ωqν),

where Nσ(0) is the total electronic density of states per spin at the Fermi level (here we
set EF = 0), Nk and Nq indicate the total number of electronic k-points and phonon
q-points in the irreducible FBZ used for the sum. Finally, gν

kn,k+qm represents the
electron-phonon matrix element between bands n and m for the phonon mode ν:
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Aα

eAα
qν√

2MAωqν

〈
kn

∣∣∣∣δvSCF

δuq
Aα
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〉
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In the equation above, vSCF = e−iq·rVKS is the periodic part of the Kohn-Sham potential
VKS, |kn〉 is the Bloch-periodic part of the Kohn-Sham eigenfuction, and A labels atoms
in the unit cell whose mass is denoted by MA and whose Cartesian coordinates are indi-
cated by α. The phonon eigenvector normalized on the unit cell is here denoted by eAα

qν ,
and the Fourier transformed displacement of atom A along the Cartesian direction α by
uq

Aα. While λ and ωlog can be computed ab initio, the Morel-Anderson pseudopotential
μ∗ (i.e., the screened effective Coulomb interaction between electrons) is an ad hoc pa-
rameter: we will assume that it takes values in the same range as in superconductive
bulk silicon [20,21], i.e., μ∗ ∈ [0.08; 0.12].

Consider now the case of distinct parabolic bands centered around the center of the
First Brillouin Zone (Γ). The role of the Dirac deltas in eq. (2) is to limit scattering
events from the n-th Fermi surface to the m-th one (i.e., |k| = kFn and |k′| = kFm,
k′ = k + q). Thus the allowed values of |q| fall in the shaded region of fig. 2, i.e., in the
range

q2 = k2 + k′2 − 2kk′ cos θ = k2
Fn + k2

Fm − 2kFnkFm cos θ

⇒ |q| ∈
[√

k2
Fn + k2

Fm − 2kFnkFm;
√

k2
Fn + k2

Fm + 2kFnkFm

]
= [q1; q2].

(4)

Since it is an inexpensive computational task, we will compute electron-phonon matrix
elements at q = Γ and will consider them to be constant over the region delimited by
eq. (4). As a consequence we will assume

|gν
kn,k′m|2 = |gν

Γn,Γm|2, ωk′−k,ν = ωΓ,ν for |k| ∈ [0, kFn], |q| ∈ [q1, q2].

Using this simplifying assumption and inserting eq. (2) into eqs. (1b) and (1c) gives,
for a 2D electron gas,

λ = Nσ(0)
∑

ν

〈g2
νΓ〉

ωΓν
,(5a)

log(ωlog) =
Nσ(0)

λ

∑
ν

log(ωΓν)〈g2
νΓ〉

ωΓν
,(5b)

α2F (ω) =
Nσ(0)

2

∑
ν

〈g2
νΓ〉δ(ω − ωΓν),(5c)

where

(6) 〈g2
νΓ〉 =

∑
n,m

|gν
Γn,Γm|2Nσ,n(0)Nσ,m(0)

N2
σ(0)

is the squared average of the electron-phonon matrix elements over the Fermi surfaces,
and Nσ,n(0) is the total electronic density of states per spin at the Fermi level for the
n-th Fermi surface.
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(a) (b)

Fig. 2. – Allowed regions of the Brillouin zone in q-space (shaded regions) over which we consider
the electron-phonon matrix elements to be constant in the case of n �= m (a) and n = m (b).

3. – Results

3.1. Electronic structure. – As already observed in the hydrogenated diamond (111)
surface [12], hole doping by field effect induces an alteration of bond lengths even in H–Si
(111). The affected atoms (fig. 1) are H(1) and the first three silicon atoms, Si(1), Si(2)
and Si(3). Upon doping, the H–Si bond length has an increment of ∼4% and the angle
θH increases by ∼1.6%. As for the silicon atoms, the Si(1)–Si(2) bond length increases
by 0.8% and the Si(2)–Si(3) one by 0.4%, while the other bonds are unperturbed (see
table I).

We then study the spatial distribution of the induced holes in order to understand
which layers are actually doped. In fig. 3 we plot the planar-averaged–induced charge
density ρind

|| (z) along the z-axis:

(7) ρind
|| (z) =

1
Ω2D

∫
Ω2D

{ρh
3D(x, y, z) − ρ0

3D(x, y, z)}dxdy,

where ρh
3D (ρ0

3D) is the 3D charge distribution in the hole-doped (undoped) case and Ω2D

is the unit cell surface area. From fig. 3 we can clearly observe that the majority of the

Table I. – Atomic parameters in the undoped (ndop = 0 · 1014 cm−2) and hole-doped (ndop =
6 · 1014 cm−2) case for the hydrogenated silicon (111) surface, as labelled in fig. 1.

ndop = 0 · 1014 cm−2 ndop = 6 · 1014 cm−2

H–Si 1.51 Å 1.57 Å
Si(1)–Si(2) 2.36 Å 2.38 Å
Si(2)–Si(3) 2.36 Å 2.37 Å
Si(3)–Si(4) 2.37 Å 2.37 Å
θH 108.8◦ 110.5◦

θSi 110.1◦ 108.5◦
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Fig. 3. – Planar-averaged induced charge density (ρind
|| (z)) of the hole-doped hydrogenated silicon

(111) surface with ndop = 6 · 1014 cm−2.

induced holes is concentrated on the hydrogen layer facing the metal gate and on the un-
derlying 2–4 silicon layers (i.e., a region of length 5.57 Å). Therefore, field-effect doping
is confined to the sample surface, in agreement with the field-induced atomic relaxation
discussed above, and similarly to field-effect–doped H–C(111) and MoS2 [12, 22], and
does not affect atomic layers further into the slab, as can sometimes occur upon the
application of electric fields of comparable magnitude [8, 23,24].

We now focus our attention on the electronic band structure of the H–Si(111) surface,
shown in the first panel of fig. 4. Since we are inducing holes into the surface layers,
the system is no longer insulating: a Fermi level appears (EF = 0 eV) crossing three
valence bands centered around k = Γ (the center of the Brillouin zone) which are almost
parabolic. Moreover, around 0.3 eV above the Fermi energy, there is an avoided crossing
between the second and the third bands: therefore at the Fermi level they are swapped.

Fig. 4. – Electronic structure anlaysis of the hydrogenated silicon (111) surface at ndop =
6 · 1014 cm−2. First panel: electronic dispersion along high-symmetry directions of the First
Brillouin Zone (M-Γ-K). Second panel: total density of states (DOS) and the contribution
of the three bands to the total DOS. The horizontal grey line is the Fermi level, here set to
EF = 0. The DOS is in units of states/eV/16 atoms cell/spin. Labels 1 (FS1), 2 (FS2) and 3
(FS3) identify the bands crossed at the Fermi level.
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Fig. 5. – 2D Fermi surface of the hydrogenated silicon (111) system at ndop = 6 · 1014 cm−2. M,
Γ and K are high symmetry points of the Brillouin zone. Labels 1, 2, 3 denote the different
Fermi surface sheets in accordance with fig. 4.

In fig. 4 we keep track of this by labelling in the proper way the electronic bands. The
distance between EF and the top of the first two valence bands is ΔEv,1 = ΔEv,2 ≈
640meV (since they are degenerate at Γ), while the distance between EF and the top of
the third valence bands is ΔEv,3 ≈ 296meV. As depicted in fig. 5, the Fermi surface is
made up of three hole pockets centered around k = Γ.

The shape of the total electronic density of states (DOS) is step-like (fig. 4, second
panel), which is typical of 2D electron gases. The DOS at the Fermi level, Nσ(0), is
almost three times larger than in H–C(111) (see table II). Moreover, the second band
(FS2) does not contribute much to the total DOS with respect to the other two (FS1
and FS3), while in the case of H–C(111) FS2 and FS3 were equally relevant to the total
DOS.

We can also study the character of the electronic bands by looking at the partial
density of states (PDOS). In the second panel of fig. 6 we show the in-plane (i.e., parallel
to the surface, in the XY -plane) and out-of-plane (i.e., perpendicular to the surface,
along the Z-axis) contributions to the total DOS. By comparison with the band structure
reported in the first panel, it turns out that the first two bands (FS1 and FS2) are actually
purely planar, while FS3 is a band involving out-of-plane orbitals. The third panel of
fig. 6 reports the contribution to the DOS of the atomic layers affected by field-effect
doping. Bands FS1 and FS2 are actually coming from the orbitals of Si(1) and Si(2),
while Si(3), Si(4) and H(1) contribute to the third band (FS3). It is important to stress

Table II. – Total DOS (Nσ(0)) and DOS per bands (Nσ,n(0), n = 1, 3 as labelled in fig. 5) at the
Fermi level (EF = 0) in units of states/eV/16 atoms cell/spin for the hole-doped hydrogenated
diamond (111) [12] and hydrogenated silicon (111) surfaces (ndop = 6 · 1014 cm−2).

Nσ(0) Nσ,1(0) Nσ,2(0) Nσ,3(0)

H–C(111) 0.393 0.1783 0.1088 0.1059
H–Si(111) 1.040 0.6800 0.0700 0.2900
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Fig. 6. – Electronic structure anlaysis of the hydrogenated silicon (111) surface at ndop =
6 · 1014 cm−2. First panel: electronic dispersion along high-symmetry directions of the First
Brillouin Zone (M-Γ-K). Second panel: partial density of states (PDOS) depicting the planar
(XY ) and out-of-plane (Z) character of the electronic bands. Third panel: partial density of
states (PDOS) showing the contribution of the atomic layers involved in the field-effect doping
(as labelled in fig. 1). The horizontal grey line is the Fermi level, here set to EF = 0. DOS and
PDOS are in units of states/eV/16 atoms cell/spin.

here the role of hydrogen atoms: while in the hydrogenated diamond (111) surface they
did not contribute to the total DOS, in the H–Si(111) surface their contribution to the
total DOS is comparable to that of Si(3) and Si(4).

3.2. Superconductive properties. – We finally turn our attention to the possible su-
perconductive phase transition in the hole-doped hydrogenated silicon (111) surface by
applying the simplified model described in sect. 2.2. In fig. 7 we plot the Eliashberg
spectral function α2F (ω) (eq. (5c)), the electron-phonon coupling constant λ (eq. (5a))

Fig. 7. – Phonon density of states (phDOS, dashed line), Eliashberg spectral function (α2F (ω),
solid black line) and electron-phonon coupling constant (λ, solid grey line) for the H–Si(111)
surface at ndop = 6 ·1014 cm−2, obtained from the simplified superconductive model. In order to
plot the phDOS and α2F (ω) we replaced the δ(ω − ων) in eq. (5c) and eq. (8) with Gaussians
of spread 0.002 eV and 0.001 eV respectively. The phDOS and α2F (ω) are in arbitrary units.
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Table III. – Electron-phonon coupling constant (λ), logarithmic averaged phonon frequency
(ωlog), Morel-Anderson pseudopotential (μ∗) and superconductive critical temperature (Tc) for
hole-doped H–C(111) [12] and H–Si(111) surfaces (ndop = 6 · 1014 cm−2). The last two lines
report the same quantities for the Wannier-renormalized systems.

λ ωlog (cm−1) μ∗ Tc (K)

H–C(111) 1.09 629.94 0.13–0.14 63.14–57.20
H–Si(111) 0.98 102.67 0.08–0.12 10.91–8.94

H–C(111) (W) 0.81 670.17 0.13–0.14 34.93–29.60
H–Si(111) (W) 0.73 109.22 0.08–0.12 6.98–5.14

and the phonon density of states (phDOS) defined as

(8) phDOS =
1

3Na

∑
ν

δ(ω − ων),

where Na is the number of atoms in the unit cell. From the Eliashberg spectral function
we can recognize four modes that have the strongest electron-phonon interactions. The
first one is an out-of-plane vibrational mode at ω1,⊥ = 39.80meV, with 〈g2

1,Γ〉 = 0.456 ·
10−2 eV2, and is mainly due to H(1), Si(1) and Si(2). The second and third modes
are degenerate at ω2−3,|| = 46.64 meV, whose strength is 〈g2

2−3,Γ〉 = 0.577 · 10−2 eV2,
and describe an in-plane motion of H(1), Si(1) and Si(2). Finally we have the out-of-
plane mode of H(1) at ω4,⊥ = 250.79 meV, with 〈g2

4,Γ〉 = 0.243 · 10−2 eV2. These values
of the 〈g2

ν,Γ〉 are actually two orders of magnitude smaller than those we found in the
hydrogenated diamond (111) surface, but this was to be expected since silicon atoms
are heavier than carbon atoms and the electron-phonon matrix elements depend on the
inverse of the atomic mass (eq. (3)).

Nevertheless, the electron-phonon coupling constant λ computed with the simplified
superconductive model for the H–Si(111) surface is comparable to that obtained in the
same way for H–C(111), due to the higher densities of states at the Fermi level of the
former which compensate for the lower electron-phonon matrix elements. As we can see
from table III, in the H–Si(111) surface we have λSi = 0.98 while for H–C(111) we have
λC = 1.09. However the Tc of the hole-doped H–Si(111) surface is ∼6 times smaller than
that of H–C(111): indeed we find Tc ∈ [8.94; 10.91] K, with μ∗ ∈ [0.08; 0.12]. This is due
to the fact that hole-doped H–C(111) has a logarithmic averaged phonon frequency ωlog

which is ∼6 times bigger than that of H–Si(111). As a final remark, we have to recall
that in H–C(111) this simplified superconductive model was found to overestimate λ and
underestimate ωlog, as discussed in ref. [12]. Indeed, a more accurate calculation of the
electron-phonon matrix elements through a Wannier-interpolation scheme over the whole
Brillouin zone [25,26] gave the values of λ and ωlog reported in the third line of table III,
which are renormalized by ∼30% and ∼3%, respectively. If similar renormalizations
were to occur also for H–Si(111), we would obtain the values reported in the fourth line
of table III, i.e., ωlog = 109.22 cm−1 and λ = 0.73, which still give a superconductive
transition with a reduced critical temperature Tc ∈ [5.14; 6.98] K, depending on the
value of μ∗.
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4. – Conclusions

In this work we have shown, by means of DFT calculations [14-16], that the hydro-
genated (111) surface of silicon can develop a superconducting phase if sufficiently hole-
doped by field effect —in particular, at the surface hole concentration ndop = 6·1014 cm−2.
We have estimated the superconductive critical temperature Tc via the McMillan/Allen-
Dynes formula and a simplified superconductive model based on linear response com-
putations at q = Γ. We have compared the results with the field-effect hole-doped
hydrogenated diamond (111) surface at the same doping value [12]. Due to the smaller
atomic mass, the H–Si(111) surface shows lower values of the electron-phonon matrix ele-
ments with respect to the diamond counterpart. However, thanks to the larger density of
states at the Fermi level, we have found a sizable λSi = 0.98 (while that of H–C(111) was
λC = 1.09). Nevertheless, the low ωlog of the H–Si(111) surface allows for a superconduc-
tive phase transition at Tc ∈ [8.94; 10.91] K (with μ∗ ∈ [0.08; 0.12], refs. [20,21]), which is
∼6 times smaller than the diamond counterpart. Note that this value is an upper limit
for Tc, because the simplified model was shown [12] to overestimate it. A more accurate
evaluation could be obtained through a Wannier interpolation of the electron-phonon
matrix elements over the whole Brillouin zone. As we already observed for the hydro-
genated diamond surface, the superconducting phase is spatially limited to the first few
layers of the sample: indeed, the analysis of the distribution of the induced charge and of
the electronic and vibrational properties shows that H(1), Si(1) and Si(2) atoms are the
ones contributing the most to the superconductive phase. Moreover, in both cases the
electronic and vibrational properties and the electron-phonon interactions are computed
self consistently in the correct field-effect geometry, i.e., by taking fully into account the
presence of an out-of-plane electric field and a potential barrier self-consistently.
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