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Summary. — This study considers the entropy at the interaction of electrons via
photons. Due to full reversibility, a conservation law for the interaction entropy is
assumed. The interaction entropy for classical particles, as well as particles with
spin 1/2 and a photon gas was calculated depending on the number of occupied
microstates N. For a numerically computed number N = 137.1356.., an equality
of the entropies of electrons to the entropy of an according photon gas was found.
This result is discussed with respect to Sommerfelds fine-structure constant.

PACS 24.10.Pa — Thermal and statistical models.

PACS 32.70.Jz — Line shapes, widths, and shifts.

PACS 42.50.Ar — Photon statistics and coherence theory.
PACS 44.40.+a — Thermal radiation.

PACS 45.20.dh — Energy conservation.

PACS 14.60.Cd — Electrons (including positrons).

1. — Introduction

Richard P. Feynman uniquely described the question of the origin of Sommerfelds
fine-structure constant, as given in [1]: “There is a most profound and beautiful question
associated with the observed coupling constant, 7y, the amplitude for a real electron to emit
or absorb a real photon. It is a simple number that has been experimentally determined
to be close to —0.08542455. (My physicist friends won’t recognize this number, because
they like to remember it as the inverse of its square: about 137.03597 with about an
uncertainty of about 2 in the last decimal place. It has been a mystery ever since it was
discovered more than fifty years ago, and all good theoretical physicists put this number
up on their wall and worry about it.) Immediately you would like to know where this
number for a coupling comes from: is it related to pi or perhaps to the base of natural
logarithms? Nobody knows. It’s one of the greatest damn mysteries of physics: a magic
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Fig. 1. — Feynman graph of the electromagnetic interaction between two electrons and transport
of energy and entropy. The energy of electron 1 has to be transferred to the energy of the photon
and then to the energy of electron 2, as well as the entropy, which has to be transferred from
electron 1 to the interaction photon and then to electron 2.

number that comes to us with no understanding by man. You might say the “hand of
God” wrote that number, and “we don’t know how He pushed his pencil”. We know what
kind of a dance to do experimentally to measure this number very accurately, but we don’t
know what kind of dance to do on the computer to make this number come out, without
putting it in secretly!”.

Sommerfelds fine-structure constant is obtained by dividing the constant of the elec-
tromagnetic interaction e?/4meg by the Heisenberg constant (h ~ 1.0546 - 10734 J-s) and
the speed of light in vacuum (c ~ 2.9979 - 108 m/s):

e 1 1
1 - — ’Qj
(1) CT Ureghe - 137.035...°

where e stands for the elementary charge (1.602-1071% As), and ¢ (8.845-10712 A-s-m/V)
for the dielectric constant of the vacuum. It originated from calculating the speed in units
of the speed of light of an electron circling at the ground state of the hydrogen atom. All
four natural constants e, €9, ¢ and h can be measured in the laboratory with a sufficient
accuracy and from various and independent experiments. The numerical values of these
natural constants depend on the system of units. The values given are valid for the
International System of Units (SI). In another system of units, other values for e, gq, ¢
and A could result. But the fine-structure constant « itself has no unit and is equal for
all systems of units. It has the same numerical value in every system and is independent
of the chosen system of units. So the fine-structure constant is a natural constant indeed.

The electromagnetic interaction of two electrons can be depicted by Feynman graphs
(fig. 1). Using the above definition, the electrostatic interaction energy of two electrons
can be written in the form

ez 1 he

2 B = E—
(2) = e RYR
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Feynman’s question about how one could calculate the numerical value of o from simple
assumptions, shall be investigated with the following approach, based on a thermodynam-
ical-statistical view of the interaction of electrons and light.

The question for the coupling constant seems to be the question for the nature of
light and its interaction with charged particles (electrons). Light, from the point of
quantum theory, is considered to consist of bosons, whereas charged particles (electrons)
are fermions. The interaction between bosons and fermions seems to take place in such
a way that energy and entropy are both conserved. Energy due to the law of the conser-
vation of energy, which results of the time symmetry (Emmy Noether’s theorem), and
entropy due to the universal second law of thermodynamics dS/d¢ > 0, in the case of
the electromagnetic interaction dS = 0, because of full reversibility. Reversing the direc-
tion of time, the above Feynman graph would depict the interaction of positrons, which
experimentally react in the very same way as electrons. For the following approach, we
ask for the number of micro-states necessary for this interaction due to conservation of
energy and entropy.

2. — Theory

The density of entropy of a photon gas is calculated in statistical thermodynamics,
with the result [2]

S hoton 8 (kT\*
3) Sototon _ . 8 (h) ¢(a)

(where ((4) = 7*/90; k = Boltzmann’s constant). For the photon density one finds

N 2 (kT)?

(4) V= w2 e s®

(with ¢(3) = 1.2020567..). Both equations can be combined to calculate the entropy,
depending only on the number N of photons, which is hereafter interpreted as the number
of microstates necessary for the interaction

(5) 5= gl

¢(3)

Thus the entropy of the photon gas is simply proportional to the number of photons N.
In contrast, the entropy of a particle gas of N distinguishable particles is proportional to
the logarithm of the faculty of microstates In N.

So, questioning at which N both entropies are equal, as for the interaction of photons
with classical particles, one would need to solve the following equation (4¢(4)/¢(3) =
3.60157072):

(6) KW N

¢(3)

This equation has only one non-trivial solution at N = 96.382.. (interpolated between
the two nearest neighbours). That is interesting! The amount of entropy depends on
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Fig. 2. — Calculation of the interaction entropy for photons, classical particles and fermions with
spin 1/2 and estimation of the number N of microstates for the equality of interaction entropy.

if the particles are either distinguishable (like classical particles) or if they are undis-
tinguishable (like photons). So, the amount of microstates necessary for the interaction
between distinguishable and undistinguishable particles can be calculated via the entropy.
Interestingly, as shown in fig. 2, at smaller values of microstates N, the photon regime
is dominating the entropy, whereas at larger values of microstates N, the particle-like
regime dominates.

Equation (6) considered only classical particles. Now the question about how distin-
guishable quants interact with undistinguishable quants, shall be considered. There are
exactly two types of quants, according to their symmetry behaviour: Fermi Quants and
Bose Quants.

Bosons (photons) are undistinguishable and may be created or extinguished arbitrar-
ily. The above equations (3), (4) include this behaviour due to their derivation via Bose
statistics.

Fermions are distinguishable. For them, a In(N!)-entropy is valid, but one needs
to obey additionally the spin-entropy of the spin-(1/2) electrons. In general, the spin
entropy of non-coupling spins (like of ions in a paramagnet) is calculated by (J = 1/2
for single electrons)

(7) S=—kIn(2J + 1)V = (N - 1)kIn2.

This formula was experimentally verified at Eu®t, Pd?* salts, as described in [2], p. 353ff.
The factor (N — 1) is reasonable, as for one single electron (N = 1), no spin entropy
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exists.

To calculate the entropy transferred from electron 1 to electron 2 (fig. 1), one would
simply add both terms (the In N! term for distinguishable particles and the spin-entropy).
However, in 50% probability, there has no spin entropy to be transferred from electron 1
via photons to electron 2, as both electrons may be ordered with spin: UP equally (or
both electrons with spin: DOWN). Only in the cases where the electrons are ordered with
different spin direction (electron 1: UP and electron 2: DOWN; or electron 1: DOWN
and electron 2: UP), there has to be transferred spin entropy by the photons, so that one
has to take only the half amount of spin entropy into account, yielding for the electron
entropy depending on the number N of microstates

(8) S =kln <N! (%) UHW) .

3. — Results and conclusions

When the entropy equilibrium is calculated, the following equation is to be solved:

4C4) , _ 1) s
(9) Ty V- (N! <2)

instead of eq. (6), with its solution of 137.1356131.. (the gamma-function I'(N +1) = N!
was used for this calculation).

Using the faculty N! and interpolating linearly between the nearest neighbours, a
solution of N = 137.1278.. was obtained.

The thermodynamical statistics of microstates N is always possible, also with small
numbers N, as the mathematically derivation of the theory of the thermostatistical anal-
ysis of microstates starts at small N. For the given manuscript, usual simplifications, as
for instance done with the Stirling approximation In N! =~ NIn N for large numbers of
microstates, were avoided, as the given manuscript uses the correct formula for In V! by
using the gamma-function to numerically calculate the faculty values.

However, the entropy as an observable has an average value and its deviation. For
instance, due to vacuum fluctuations, there could be no mathematically exact lines drawn
in the above entropy/microstates-diagram, but rather smeared stripes, so that the first
contact of both lines occurs a little bit earlier. So, one could expect the approach to
the experimentally known value of 137.03597 by applying higher degrees of fluctuation
corrections.

To give some intuitive comprehension of the connection of the number of microstates
towards the photon number and the coupling constant, Planck’s assumption e = nhv
of the photon energy e at a mode with frequency v and occupation number n might be
imagined. In the case of a thermodynamic system with only one mode v, n photons can
be present at this mode v. These n photons would occupy the according phase space cell
and build up n microstates.

To give a comprehensive explanantion of the origin of the interaction energy of the
electromagnetic interaction (eq. (2)), now Heisenberg’s uncertainty principle, connecting
the uncertainties for energy and distance is considered:

(10) AEAz > he.
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In case we have two particles at the distance R = Az, the whole system (the particles
and the photons of their interaction) is allowed to “borrow” an energy amount of totally
AE “out of nothing”. This energy amount is assumed to be distributed equipartitionally
over the N microstates of the thermodynamic system, so AE = N - E. One electron
itself experiences therefore only the 1/N-th part of the quantum energy AFE, as the
other (N —1)/N parts are spread to the other N — 1 microstates, where the questionable
electron is recently not to be found. Thus, one might write

(11) NEAz = he,
(12) NER = he,
he 1
1 _he 1
(13) R 137.1356..

Compared to eq. (2), one might consider the electrostatic energy as a quantum-mechani-
cal energy gained “out of nothing”, but being only the 137th part of the energy possible,
because the interaction between electrons and photons needs that many microstates take
place obeying energy and entropy conservation.

Similar considerations should be made for other types of interactions (gravitation,
weak and strong interaction). Having understood an interaction, one should be able to
calculate its coupling constant. Understanding gravitation and electromagnetic interac-
tion, one should additionally be able to calculate the lepton masses, for instance. In
case the entropy curves should not intersect but had only a point of nearest approach
to each other, an amount of irreversible entropy would be produced by this interaction,
according to real loss (or brake) of (CP-) symmetry, which could be the case like at the
kaon(0) or B(0)-meson decay. So the consideration of entropy could be a fruitful tool for
the understanding of interactions.
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