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Summary. — A technique for constructing fluid models for rotating neutron stars
is presented. The technique is applied to construct composite fluid sources for
an exterior stationary-axisymmetric field given by Gutsunaev and Manko. Matter
constructing the source is shown to satisfy energy conditions and hence the source
is physically reasonable.

PACS 04.20.-q – Classical general relativity.

1. – Introduction

The discovery of pulsars and their subsequent interpretation as rotating neutron stars
have prompted attention towards the study of both equilibrium configurations and sta-
tionary solutions in general relativity. These investigations have greatly advanced our
understanding of the final state of matter in evolving stars. Stationary axisymmetric
fields are intimately related to the investigation of rotating stars: their constructions,
gravitational fields and gravitational collapse, whence they derive their extreme impor-
tance.

The case of slow rotation was treated for the first time by Hartle and Thorne [1, 2].
The analytic structure of the space-time outside a slowly rotating star, and its relation to
the Kerr metric, have been well understood since their seminal work. In 1997, Darke et
al. [3] applied the Newman-Janis algorithm to obtain interior rotating sources of the Kerr
metric from non rotating ones. On the other hand, since 2003, thanks to Stergioulas [4],
numerical solutions of the Einstein equations for stars rotating up to the mass-Shedding
limit are now routinely obtained with a number of different methods. In 2004, Stergioulas
and Berti [5] matched approximately the analytic and the numerical solutions for rapidly
rotating Neutron stars. After a few months, Berti et al. [6] compared three different
models of rotating stars space-time: the Hartle-Thorne model, the exact analytic solution
of Gutsunaev and Manko [7], and a numerical solution of the full Einstein equations.
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The plan of the paper is as follows: in sect. 2 we describe the vacuum solution which
was obtained by Gutsunaev and Manko. In sect. 3, we construct the interior solution
which consists of a slowly rotating core and a rotating spherical shell. In sect. 4, we
investigate physical properties of the interior and present plots for pressures, density and
angular velocity. Section 5 is devoted to a discussion of the results.

2. – The Gutsunaev-Manko metric

The complex Ernst potential is defined by the relations

ε = β + iΦ, ε∗ = β − iΦ,(1)
Φ,z = ρ−1β2w,ρ, Φ,ρ = −ρ−1β2w,z .

The functions β and w are the coefficients in the Papapetrou line element written in
canonical Weyl coordinates as

ds2 = β (dt− wdφ)2 + β−1[j
(
dρ2 + dz2

)
+ ρ2dφ2] .

The asymptotic behavior of the functions β and Φ in the spherical coordinates (r, θ) is
the following:

β = 1 − 2m
r

+ o(r−3), Φ = 2J
cos θ
r2

+ o(r−3),

m and J being the total mass and angular momentum respectively, given by

m =
[(M − k)(1 − a2) + k(1 + a2)]

(1 − a2)
,

J =
2ak[2M(1 − a2) − k(1 − 3a2)]

(1 − a2)
,

where M and k are real constants and a is a very small real constant.
Gutsunaev and Manko [7] consider a special case of solution arising from the choice

of constants in the form k = −l,M = l. In the prolate ellipsoidal coordinates (x, y)

ρ = l
√

(x2 − 1)(1 − y2), z = lxy,

the solution is given by

ds2 = β(dt−Wdφ)2 −(2)

− l2

β

[
d2φ2

(−1 + x2
) (

1 − y2
)

+ j
(
x2 − y2

) {
dx2

x2 − 1
+

dy2

1 − y2

}]
,

where

β =
v (x− 1)
u (x + 1)

,

W =
−4ael

(
1 − y2

)
(1 − a2) v

,
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j =
v

(
x2 − 1

)
(1 − a2)2(x2 − y2)9

,

u = 4a2(x + 1)2
(
x2 − 1

)2
y2

(−4x3 + x4 − 4xy2 + 6x2y2 + y4
)2

+

+
[
−a2(x + 1)2

(
x2 − 1

)3
+

(
x2 − y2

)4
]2

,

e = −a2(x + 1)3
(
x2 − y2

)5(
1 − 3x + 3x2 + y2

)
+

(
x2 − y2

)5 (
x3 + 3x4 + 3x5 + 3xy2 +

+6x2y2 + x3y2 − y4
)

+ a4(1 + x)5
(
x2 − 1

)3 (
1 − 5x + 10x2 − 10x3 + 5x4 + y2 −

−5xy2 + 10x2y2 + y4
) − a2

(
x2 − 1

)3(
x5 + 5x6 + 10x7 + 8x8 + 5x9 + 10x3y2 +

+ 45x4y2 + 76x5y2 − x6y2 + 10x7y2 + 5xy4 + 15x2y4 + 10x3y4 − 145x4y4 +
+ x5y4 − y6 − 51x2y6 − 3y8

)
,

v = 4a2
(
x2 − 1

)3 (−1 + y2
) (

x4 + 6x2y2 + y4
)2

+
[
−a2

(−1 + x2
)4

+
(
x2 − y2

)4
]2

.

This solution can also be obtained using the HKX transformations [8]. Only in [9], it was
noticed that the asymptotic flatness can be achieved by a simple choice of integration
constant a without performing an additional Ehlers transformation. The quadrupole
moment is

Q = 4a2l3
(
3 − 2a4 − 3a2

) (
1 − a2

)−3
.

In the static limit, a = 0, the multipole moment vanishes and the metric reduces to the
Schwarzschild solution. It has been shown that the above solution possesses an event
horizon defined by the hypersurface x = 1, which turns out to be singular only at the
poles (y = ±1). The required commuting Killing vector fields are ξa = ∂/∂t, ηa = ∂/∂φ.

Performing in (2) the coordinate transformation

x = −1 +
r

m
, y = cos θ, l =

(
1 − a2

)
m

1 − 3a2
,

we get, similar to the Kerr solution, two physical parameters representing the total
mass m and the angular momentum (determined by a). Then one may come to the
Schwarzschild metric at J = 0 (i.e. a = 0).

3. – Composite fluid models for rotating neutron stars

We construct composite fluid sources for the above vacuum solution by using the
technique described in [10], but we replace the static core by a slowly rotating one. The
new configuration would be more physically reasonable.

Let the space-time be divided into two material regions, A(r < c) and B(c < r < R),
and a vacuum region E(r > R); with the spheres SA(r = c) and SE(r = R) separating
them. c and R are constants such that 0 < c < R. g(a) be the vacuum rotating metric
with g(0) the slowly rotating metric which has a given source g0 inside a region I(r < R),
then we may construct a source for g(a) inside the same region I as follows.

Let A ⊂ I with boundary SA. Assume that g0 is valid in A, i.e.

gA = g0 .
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In the shell B = I −A construct the metric

ds2 = Btdt2 + Brdr2 + Bθdθ2 + Bφdφ2 + 2Bφtdφdt,

where

gB = g0 + [g(a) − g(0)]P, c ≤ r ≤ R.(3)

P = P (r) ∈ C2[c,R] is a dimensionless matching function satisfying the boundary con-
ditions

P (c) = P ′(c) = P ′(R) = 0, P (R) = 1.(4)

Otherwise, P is arbitrary.
Extensions of the work of Brill and Cohen [11, 12] show that the field equations for

the case of slow rotation assumes a rather simple form. If the rotation rate is slow,
deformations away from spherical can be ignored and the relevant equations are the
structure equations for static spherical symmetry and a new equation expressing the
dragging of inertial frames, Ωin, in terms of solutions to the static field.

The condition of slow rotation leads to the metric

ds2 = γ2(r)dt2 − τ−1(r)dr2 − r2[dθ2 + sin2θ(dφ− Ωin(r)dt)2] .(5)

In this expression, γ(r) and τ(r) are solutions of the equation [13-15]

τ ′(r) − 2(γ + rγ′ − r2γ′′)
r(γ + rγ′)

τ(r) =
−2γ

r(γ + rγ′)
,

which represent two of the field equations for static spherical symmetry (obtained by
assuming an isotropic pressure). The remaining equations are

8πr2µ(r) = 1 − τ(r) − rτ ′(r),
8πr2p(r) = [γ(r) + 2rγ′(r)][τ(r)/γ(r)] − 1,

which can be taken as definitions of the density ρ and the pressure p of the fluid.
The new equation which depicts the case of slow rotation is

τ(r)
(

Ω′′
in + 4

Ω′
in

r

)
= 4πr (p(r) + µ(r))

(
Ω′

in +
4(Ωin − ω)

r

)
,

where ω is the angular velocity of the rotating coordinate system, and Ωin is the dragging
of inertial frames.

Let the material core region, A = A ∪ SA, have the slowly rotating metric [16]

γ = 1 − m2

R2
− 3m

2R
+

(
m2

2R4
+

m

2R3

)
r2 + O3,

τ = 1 − 2m2r2

R4
− 2mr2

R3
+

2m2r4

R6
+ O3,

Ωin =
−20ma

7R3
+

6mar7

7R10
+ O3 .
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At the boundary r = R, this metric matches smoothly onto the exterior slowly rotating
metric

γ0 =

√
1 − 2m

R
,

τ0 = 1 − 2m
r

,

Ω0 =
−2ma

r3
.

We assume that the Gutsunaev-Manko metric (2) is valid in the region E= E ∪ SE .
In the shell B = I −A construct the metric

ds2 = Btdt2 + Brdr2 + Bθdθ2 + Bφdφ2 + 2Bφtdφdt,

where

Bt = 1 − 3m
R

+
m2

4R2
+

mr2

R3
− m2r2

2R4
+

m2r4

4R6
+

4Pa2m2sin θ2

r4
− 400a2m2r2sin θ2

49R6
+

+
240a2m2r9sin θ2

49R13
− 36a2m2r16sin θ2

49R20
+ O3,

Br = −1 − 2m r2

R3
− 2m2r2

R4
− 2m2r4

R6
− 4Pa2m2sin θ2

r2
+ O3,

Bθ = 4P a2m2 − r2 − 4Pa2m2sin θ2 + O3,

Bφ = 4P a2m2sin θ2 − r2sin θ2 + O3,

Bφt =
−2P a m sin θ2

r
+

12P a m2sin θ2

r
+

20a m r2sin θ2

7R3
− 6a m r9sin θ2

7R10
+ O3.

It is seen that the metric functions are regular everywhere for c > 0.

4. – Physical properties of the source

We note that the source body is deformed with the boundary not being a proper
sphere. For the whole interior region I = A ∪ B the excess of the proper equatorial
radius Re over the proper polar radius Rp is given by

∆R = Re −Rp = 4a2m2

∫ R

0

P (r)
r2

dr + O3.

Then ∆R > 0 and the source body is oblate.
Many examples of the matching functions P (r) can be constructed. The polynomial

of least degree satisfying the boundary conditions (3) has the form

P1 = (R− c)−3[c2(3R− c) − 6cRr + 3(c + R)r2 − 2r3].

The truncated Fourier series of least multiple is given by

P2 =
1
2
− 1

2
cos

(
r − c

R− c

)
π = sin2

(
r − c

R− c

)
π

2
.
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If we impose the additional condition P ′′(c) = P ′′(R) = 0, the corresponding polynomial
and trigonometric functions will, respectively, have the forms

P3 = (R− c)−5[−c3(c2 − 5cR + 10R2) + 30c2R2r − 30cR(c + R)r2 +
+10(c2 + 4cR + R2)r3 − 15(c + R)r4 + 6r5],

P4 =
1
2
− 9

16
cos

(
r − c

R− c

)
π +

1
16

cos3
(

r − c

R− c

)
π =

=
1
2
− 3

4
cos

(
r − c

R− c

)
π +

1
4

cos3
(

r − c

R− c

)
π.

Another simple trigonometric function is given by

P5 = 1 − cos3
(

r − c

R− c

)3
π

2
.

Such functions will ensure the additional continuity of the tangential pressures.
In principle, a direct substitution of the metric tensor into the field equations yields

exact expressions for the stress-energy tensor and hence for the fluid variables.
In the slowly rotating core A, the principal isotropic pressures pA , the energy density

µA and the angular velocity ΩA have the form

κp
(r)
A = κp

(θ)
A = κp

(φ)
A = m2

(
3
R4

− 3r2

R6

)
+ O3 ,

κµA =
6m
R3

+ m2

(
6
R4

− 10r2

R6

)
+ O3 ,

κΩA =
−5ar5

R7
+ am

(−20
7R3

+
5r5

2R8
+

137r7

21R10

)
+

+ am2

(
10

7R4
− 10r2

3R6
− 5r5

4R9
− 29r7

84R11
+

137r9

18R13

)
+ O3 .

In region B the derived results have the form

κp
(r)
B = m2

(
3
R4

− 3r2

R6

)
+ a2m2 ·

·
[6P
r6

+
6P 2

r6
− 120P

7R3r3
− P ′′

r2
+

36Pr4

7R10
+

(−5P ′

r5
− 10PP ′

r5
+

+
2P ′2

r4
+

P ′′

r4
+

2PP ′′

r4
+

180P
7R3r3

− 20P ′

7R3r2
− 20P ′′

7R3r
+

240Pr4

7R10
+

+
90P ′r5

7R10
+

6P ′′r6

7R10

)
sin θ2

]
+ O3,

κp
(θ)
B = m2

(
3
R4

− 3r2

R6

)
+ a2m2 ·

·
[

6P
r6

+
6P 2

r6
− 120P

7R3r3
− P ′′

r2
+

36Pr4

7R10
+

(
−5P ′

r5
− 10PP ′

r5
+
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+
2P ′2

r4
+

P ′′

r4
+

2PP ′′

r4
+

180P
7R3r3

− 20P ′

7R3r2
− 20P ′′

7R3r
+

240Pr4

7R10
+

+
90P ′r5

7R10
+

6P ′′r6

7R10

)
sin θ2

]
+ O3,

κp
(φ)
B = m2

(
3
R4

− 3r2

R6

)
+ a2m ·

·
(
−2P ′2R3

3r6
+

2P ′P ′′R3

3r5
− P ′′2R3

6r4
+

20P ′r3

R7
− 10P ′′r4

R7
− 150r12

R17

)
·

·sin θ2 + a2m2

[
4P
r6

+
4P 2

r6
+

4P ′

r3
− 80P

7R3r3
− 2P ′′

r2
+

24Pr4

7R10
+

+

(
24P
r6

− 3P 2

r6
− P ′2R2

r6
+

8P ′2R3

r6
− 14P ′

r5
− 4PP ′

r5
+

P ′P ′′R2

r5
−

−8P ′P ′′R3

r5
+

8P ′2

9r4
+

2P ′′

r4
+

PP ′′

r4
−P ′′2R2

4r4
+

2P ′′2R3

r4
− 6P ′

r3
− 8P ′P ′′

9r3
+

+
120P
7R3r3

+
2P ′′

r2
+

17P ′′2

36r2
+

40P ′

7R3r2
− 40P ′′

7R3r
+

30P ′r3

R8
− 120P ′r3

R7
+

+
132Pr4

7R10
− 15P ′′r4

R8
+

60P ′′r4

R7
− 596P ′r5

21R10
+

694P ′′r6

21R10
− 225r12

R18
+

+
488r14

R20

)
sin θ2

]
+ O3,

κµB =
6m
R3

+ m2

(
6
R4

− 10r2

R6

)
+ a2m ·

·
(
−2P ′2R3

3r6
+

2P ′P ′′R3

3r5
− P ′′2R3

6r4
+

20P ′r3

R7
− 10P ′′r4

R7
− 150r12

R17

)
·

·sin θ2 + a2m2

[
−4P ′

r3
+

4P ′′

r2
+

(
−9P 2

r6
− P ′2R2

r6
+

8P ′2R3

r6
+

12PP ′

r5
+

+
P ′P ′′R2

r5
− 8P ′P ′′R3

r5
− 10P ′2

9r4
− 3PP ′′

r4
− P ′′2R2

4r4
+

2P ′′2R3

r4
+

+
6P ′

r3
− 8P ′P ′′

9r3
− 2P ′′

r2
+

17P ′′2

36r2
+

30P ′r3

R8
− 120P ′r3

R7
−

−72Pr4

R10
− 15P ′′r4

R8
+

60P ′′r4

R7
− 116P ′r5

3R10
+

94P ′′r6

3R10
−

−225r12

R18
+

506r14

R20

)
sin θ2

]
+ O3,

κΩB = a

(
P ′R3

3r4
− P ′′R3

6r3
− 5r5

R7

)
+ am ·

·
(
−20
7R3

− P ′R2

6r4
− 2P ′R3

r4
+

P

2r3
+

P ′′R2

12r3
+

P ′′R3

r3
+

2P ′

9r2
+
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Fig. 1.

+
5P ′′

36r
+

5r5

2R8
+

137r7

21R10

)
+ am2

(
10

7R4
+

7P ′

27R3
+

P ′R
12r4

+
P ′R2

r4
− P

4Rr3
− P ′′R

24r3
−

−P ′′R2

2r3
− 7P ′

3r2
− 11P ′

36Rr2
+

7P ′′

6r
+

7P
12R3r

+
P ′′

36Rr
+

35P ′′r
216R3

−

−10r2

3R6
− 5r5

4R9
− 29r7

84R11
+

137r9

18R13

)
+ O3.

On denotes terms of order ≥n in m/R and a.
This is an anisotropic fluid with variable density in differential rotation. Formulas in

the slowly rotating core A are obtained by setting a2 = 0.
As an illustration, we consider a strong field specified by the following values for the

parameters (in geometric units):

m = 0.1, a = −0.02, c = 0.6, R = 1.

Using the simple matching function P = P5, we produced plots for the fluid variables
through the source region I = A ∪B. The output is shown in fig. 1.



MODELS FOR ROTATING NEUTRON STARS 9

It can be seen that the density, the principal pressures and the angular velocity are
all positive everywhere inside the source. Furthermore, µ > Σp(i) hold and hence the
energy conditions [17] are satisfied. Besides, the pressures are monotonically decreasing
outward, and hence our model, so constructed, is physically reasonable.

5. – Conclusion

A global solution describing a rigidly rotating disk of dust [18] could be considered a
first step towards the exact description of rotating stellar models.

In this work we presented a technique for constructing families of composite fluid
models for rotating neutron stars, each model corresponding to a particular choice of
the matching function P . The technique has been successful in constructing physically
reasonable models for rotating neutron stars in this work and, previously, for sources of
the rotating Curzon metric [10] and the Kerr metric [16].

Contrary to the fluid sources of the Kerr metric [16], the angular velocity is always
positive for the source of the Gutsunaev-Manko metric. This absence of counter-rotating
part should be stressed as a nice feature from an astrophysical point of view. Our source
body is not a proper sphere but it is oblate.
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